

remind-me-some

[image: _images/badge.svg]
 [https://github.com/audrow/remind-me-some/actions?query=branch%3Amaster][image: _images/badge1.svg]
 [https://codecov.io/gh/audrow/remind-me-some][image: _images/remind-me-some.svg]
 [https://badge.fury.io/py/remind-me-some]Schedules some number of items that are due today.

Tasks that you don’t get to are weighted to be more heavily in the future.

Features

	Repeatedly schedules tasks at a specified frequency

	Schedule a set number or less tasks each day

	Tasks that don’t get done or scheduled will increase in priority

	Tested on Python 3.6, 3.7, and 3.8

Usage

$ git clone https://github.com/audrow/remind-me-some
$ pip install remind-me-some

from datetime import date, timedelta
from remind_me_some.goal import Goal
from remind_me_some.schedule_manager import ScheduleManager

goals = (
 ("Call Mom", timedelta(weeks=1)),
 ("Call Dad", timedelta(weeks=1)),
 ("Call Grandma", timedelta(weeks=2)),
 ("Call Grandpa", timedelta(weeks=2)),
 ("Call Cousin", timedelta(weeks=4)),
 ("Call Uncle", timedelta(weeks=4)),
)
goals_ = []
for goal in goals:
 goals_.append(Goal(name=goal[0], frequency=goal[1]))

sm = ScheduleManager()
sm.add_goals(*goals_)
sm.update_schedule()
print(sm)
sm.run() # run the callback for the scheduled action
sm.run() # clear the action if it's completed
print(sm)

API Documentation

If you are looking for information on a specific function, class, or method,
this part of the documentation is for you.

	Developer Interface
	Schedule Manager

	Exclude Date Function

	Data Structures
	Goal class

	Action class

	Event class

Issues

If you encounter any problems, please file an issue [http://github.com/audrow/remind-me-some/issues] along with a detailed description.

About Remind-Me-Some

Remind-Me-Some was created by Audrow Nash [https://audrow.github.io/] - audrow@hey.com

Distributed under the MIT license. See LICENSE.txt for more information.

Developer Interface

This part of the documentation covers all the interfaces of Remind-Me-Some.

Schedule Manager

	
class remind_me_some.ScheduleManager(max_actions_per_day: int = 1, is_exclude_date_fn: Callable[[datetime.date], bool] = <function is_exclude_date>)

	The schedule manager class.

	
__init__(max_actions_per_day: int = 1, is_exclude_date_fn: Callable[[datetime.date], bool] = <function is_exclude_date>) → None

	Initialize the schedule manager.

	Parameters

	
	max_actions_per_day – The max number of actions that should occur on any day.

	is_exclude_date_fn – A function that return True if a date should be excluded
and false otherwise. This can be used to avoid scheduling
actions on weekends, holidays, etc.

	
property actions

	Get the active actions.

	Returns

	A list of active actions.

	
add_goal(goal: remind_me_some.goal.Goal) → None

	Add one new goal.

	Parameters

	goal – A goal to add.

	
add_goals(*goals: remind_me_some.goal.Goal) → None

	Add one or more new goals.

	Parameters

	goals – One or more goals.

	
property goals

	Get the current goals.

	Returns

	A list of current goals.

	
run() → None

	Execute or complete ready actions.

	
update_schedule() → None

	Update the schedule to balance actions.

Exclude Date Function

	
remind_me_some.is_exclude_date(date_: datetime.date, is_exclude_holidays: bool = True, is_exclude_weekends: bool = True, is_exclude_friday: bool = False) → bool

	Return True if a date should be excluded.

	Parameters

	
	date – The date to consider.

	is_exclude_holidays – True if you would like to exclude holidays.

	is_exclude_weekends – True if you would like to exclude weekends.

	is_exclude_friday – True if you would like to exclude Fridays.

	Returns

	True if the date should be excluded; false otherwise.

Data Structures

Goal class

	
class remind_me_some.Goal(name: str, frequency: datetime.timedelta, priority: float = 1.0, interest_rate: float = 0.05, last_completed: Optional[datetime.date] = None, callback: Optional[Callable] = None, is_ready_fn: Optional[Callable] = None, is_completed_fn: Optional[Callable] = None)

	Bases: remind_me_some.event.Event

The goal class.

	
__init__(name: str, frequency: datetime.timedelta, priority: float = 1.0, interest_rate: float = 0.05, last_completed: Optional[datetime.date] = None, callback: Optional[Callable] = None, is_ready_fn: Optional[Callable] = None, is_completed_fn: Optional[Callable] = None) → None

	Initialize a goal object.

Goal objects are used to create action objects at some frequency.
Most of the information given to the goal object is used to create
new action objects.

	Parameters

	
	name – The name of the event.

	frequency – How often this goal should be completed.

	priority – The starting priority an action this goal generates
(for determining its relative importance).

	interest_rate – The rate that the priority of a generated action grows each
day it is pushed back past its original due date.

	last_completed – The date that this goal was last completed.

	callback – A function to be called when a generated action is run.

	is_ready_fn – A function to determine if a generated action is ready. If
nothing is supplied this will default to be on or after the
action’s due date.

	is_completed_fn – A function to determine if the generated action has been
completed. If nothing is supplied, this will default to be
true if the callback has been called at least once.

	
property last_completed

	Get the date when this goal was last completed.

	Returns

	The last date that this goal was completed or None, if it
hasn’t been completed yet.

	
make_action() → remind_me_some.action.Action

	Generate a new action instance.

	Returns

	An action object.

	
mark_as_completed() → None

	Set the last completed date to today’s date.

Action class

	
class remind_me_some.Action(name: str, due: datetime.date, priority: float, interest_rate: float, callback: Optional[Callable[], None]] = None, is_ready_fn: Optional[Callable[], bool]] = None, is_completed_fn: Optional[Callable[], bool]] = None)

	Bases: remind_me_some.event.Event

The action class.

	
__init__(name: str, due: datetime.date, priority: float, interest_rate: float, callback: Optional[Callable[], None]] = None, is_ready_fn: Optional[Callable[], bool]] = None, is_completed_fn: Optional[Callable[], bool]] = None) → None

	Initialize an action.

	Parameters

	
	name – The name of the action.

	due – The planned date for the action to be completed on.

	priority – The priority of the action (for determining its relative
importance).

	interest_rate – The rate that the priority of the action grows each day it
is pushed back past its original due date.

	callback – A function to be called when the action is run.

	is_ready_fn – A function to determine if the action is ready. If nothing is
supplied this will default to be on or after the action’s due
date.

	is_completed_fn – A function to determine if the action has been completed. If
nothing is supplied, this will default to be true if the
callback has been called at least once.

	
is_due() → bool

	Check if the current action is due.

	Returns

	True if the current date is the due date or after;
False, otherwise.

	
push_forward(days: int = 1) → None

	Bump the due date of the current action and add interest.

	Parameters

	days – The number of days to bump the due date by.

Event class

	
class remind_me_some.event.Event(name: str, priority: float, interest_rate: float, callback: Optional[Callable[], None]] = None, is_ready_fn: Optional[Callable[], bool]] = None, is_completed_fn: Optional[Callable[], bool]] = None)

	The event class.

	
__init__(name: str, priority: float, interest_rate: float, callback: Optional[Callable[], None]] = None, is_ready_fn: Optional[Callable[], bool]] = None, is_completed_fn: Optional[Callable[], bool]] = None) → None

	Initialize an event.

	Parameters

	
	name – The name of the event.

	priority – The priority of the event (for determining its relative
importance).

	interest_rate – The rate that the priority of the event grows each step it
is pushed back past its original due date.

	callback – A function to be called when the event is run.

	is_ready_fn – A function to determine if the event is ready. If nothing is
supplied, this will default to be true if the event has not
been completed.

	is_completed_fn – A function to determine if the event has been completed. If
nothing is supplied, this will default to be true if the
callback has been called at least once.

	
callback() → Any

	Call the event’s callback.

	Returns

	Whatever the callback returns.

	
is_called() → bool

	Check if the event has been called.

	Returns

	True if the callback has been called at least once;
false otherwise.

	
is_completed() → bool

	Check if an event has been completed.

	Returns

	True if the is completed function returns true; false
otherwise.

	
is_due() → bool

	Check if the event is due.

	Returns

	True if the completion function doesn’t return true;
false otherwise.

	
is_ready() → bool

	Check if an event is ready.

	Returns

	True if the ready function returns true and the event
has not been completed; false otherwise.

	
push_forward(steps: int = 1) → None

	Increase the priority of event by applying interest.

	Parameters

	steps – The number of times to apply the interest rate to the event’s
priority.

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 remind_me_some	

Index

 _
 | A
 | C
 | E
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | U

_

 	
 	__init__() (remind_me_some.Action method)

 	(remind_me_some.event.Event method)

 	(remind_me_some.Goal method)

 	(remind_me_some.ScheduleManager method)

A

 	
 	Action (class in remind_me_some)

 	actions() (remind_me_some.ScheduleManager property)

 	
 	add_goal() (remind_me_some.ScheduleManager method)

 	add_goals() (remind_me_some.ScheduleManager method)

C

 	
 	callback() (remind_me_some.event.Event method)

E

 	
 	Event (class in remind_me_some.event)

G

 	
 	Goal (class in remind_me_some)

 	
 	goals() (remind_me_some.ScheduleManager property)

I

 	
 	is_called() (remind_me_some.event.Event method)

 	is_completed() (remind_me_some.event.Event method)

 	is_due() (remind_me_some.Action method)

 	(remind_me_some.event.Event method)

 	
 	is_exclude_date() (in module remind_me_some)

 	is_ready() (remind_me_some.event.Event method)

L

 	
 	last_completed() (remind_me_some.Goal property)

M

 	
 	make_action() (remind_me_some.Goal method)

 	mark_as_completed() (remind_me_some.Goal method)

 	
 	
 module

 	remind_me_some

P

 	
 	push_forward() (remind_me_some.Action method)

 	(remind_me_some.event.Event method)

R

 	
 	
 remind_me_some

 	module

 	
 	run() (remind_me_some.ScheduleManager method)

S

 	
 	ScheduleManager (class in remind_me_some)

U

 	
 	update_schedule() (remind_me_some.ScheduleManager method)

 nav.xhtml

 Table of Contents

 		
 remind-me-some

 		
 Developer Interface

 		
 Schedule Manager

 		
 Exclude Date Function

 		
 Data Structures

 		
 Goal class

 		
 Action class

 		
 Event class

_static/minus.png

_static/plus.png

_static/file.png

